Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33917465

ABSTRACT

SARS-CoV-2 environmental monitoring can track the rate of viral contamination and can be used to establish preventive measures. This study aimed to detect by RT-PCR the presence of SARS-CoV-2 from inert surface samples in public health settings with a literature review about surface contamination and its burden on spread virus. Samples were collected from health settings in Curitiba, Brazil, between July and December 2020. A literature review was conducted using PRISMA. A total of 711 environmental surface samples were collected from outpatient areas, dental units, doctors' offices, COVID-19 evaluation areas, and hospital units, of which 35 (4.9%) were positive for SARS-CoV-2 RNA. The frequency of environmental contamination was higher in primary care units than in hospital settings. The virus was detected on doctors' personal items. Remarkably, the previously disinfected dental chair samples tested positive. These findings agree with those of other studies in which SARS-CoV-2 was found on inanimate surfaces. Detection of SARS-CoV-2 RNA on surfaces in public health settings, including those not meant to treat COVID-19, indicates widespread environmental contamination. Therefore, the intensification of disinfection measures for external hospital areas may be important for controlling community COVID-19 dissemination.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil , Disinfection , Humans , RNA, Viral
2.
Sci Total Environ ; 754: 142163, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32911141

ABSTRACT

Faecal-oral transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is yet to be validated, but it is a critical issue and additional research is needed to elucidate the risks of the novel coronavirus in sanitation systems. This is the first study that investigates the potential health risks of SARS-CoV-2 in sewage to wastewater treatment plant (WWTP) workers. A quantitative microbial risk assessment (QMRA) is applied for three COVID-19 scenarios (moderate, aggressive and extreme) to study the effects of different stages of the pandemic in terms of percentage of infected population on the probability of infection to WWTP workers. A dose-response model for SARS-CoV-1 (as a surrogate pathogen) is assumed in the QMRA for SARS-CoV-2 using an exponential model with k = 4.1 × 102. Literature data are incorporated to inform assumptions for calculating the viral load, develop the model, and derive a tolerable infection risk. Results reveal that estimates of viral RNA in sewage at the entrance of WWTPs ranged from 4.14 × 101 to 5.23 × 103 GC·mL-1 (viable virus concentration from 0.04 to 5.23 PFU·mL-1, respectively). In addition, estimated risks for the aggressive and extreme scenarios (2.6 × 10-3 and 1.3 × 10-2, respectively) were likely to be above the derived tolerable infection risk for SARS-CoV-2 of 5.5 × 10-4 pppy, thus reinforcing the concern of sewage systems as a possible transmission pathway of SARS-CoV-2. These findings are helpful as an early health warning tool and in prioritizing upcoming risk management strategies, such as Emergency Response Plans (ERPs) for water and sanitation operators during the COVID-19 and future pandemics.


Subject(s)
Coronavirus Infections , Occupational Exposure , Pandemics , Pneumonia, Viral , Wastewater , Betacoronavirus , COVID-19 , Humans , Risk Assessment , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...